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The first postulate of Quantum Mechanics states that a system’s state is fully characterized by
a vector, which is an element of an abstract space called the state space. The features of this
space may vary considerably from one system to another, and even for simple systems, the physical
interpretation of the state vectors is not always straightforward. This seminar aims to provide a
rigorous, step-by-step construction of the quantum state space associated to real space variables, first
for systems with 1 degree of freedom (one particle evolving in one dimension), and then for 3D and
many-body systems. Generalized kets (non-normalizable states) are tackled from the mathematical
and physical points of view. The state space associated to spin variables is introduced in a second
part, allowing us to discuss the notions of quantum entanglement and indistinguishability.

INTRODUCTION

Every quantum system is completely characterized by its wavefunction Ψ, which is defined on the system’s config-
uration space, i.e. the space of the system’s degrees of freedom. Thus, if our system consists of one particle moving
along the x-axis, then its wavefunction Ψ(x) is defined over R. If the same particle is allowed to move in 3 dimensions,
then its wavefunction Ψ(r⃗) is now defined over R3. For two particles moving in 3D, the wavefunction Ψ(r⃗1, r⃗2) is
defined over R3 × R3 = R6. For simplicity, we begin by studying a 1D particle.

I. THE 1D PARTICLE STATE SPACE

A. The L2 Lebesgue space

We begin by treating a system consisting of a unique particle evolving in one space dimension, noted x.
The system’s state is, at each point in time, completely characterized by its wavefunction Ψ(x). By Born’s rule,

the probability of finding the particle in an infinitesimal segment dx around the position x is |Ψ(x)|2dx, imposing the
normalization condition:

∫
R
dx |Ψ(x)|2 = 1 (1)

Since this integral must converge, Ψ belongs to the space L2 of square-integrable functions, which is endowed with
the Hermitian product:

⟨Ψ1,Ψ2⟩ =
∫
R
dxΨ∗

1(x)Ψ2(x) (2)

However, L2 is not a complete space (see Appendix A for definitions). Moreover, since all information about the
system’s state can be extracted by integrating the wavefunction, then two functions Ψ1 and Ψ2 satisfying, for all
a, b ∈ R,

∫ b

a

dxΨ1(x) =

∫ b

a

dxΨ2(x) (3)

represent the same quantum state (Ψ1 and Ψ2 are said to be equal almost everywhere). We can build a new space
L2 by identifiying the functions that are equal almost everywhere (we say L2 is the quotient space of L2 by the space
of functions that are almost everywhere zero). L2 is a separable Hilbert space (again, see Appendix A).
The space F of possible wavefunctions depends on the system under consideration. It can be finite- or infinite-

dimensional. We only impose F to be a subset of L2 and the space of twice differentiable functions (so Schrödinger’s
equation can be applied). Hilbert spaces have many interesting properties we like to work with, yet F is not necessarily
a Hilbert space. Hence, we choose in practice:
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• to work in L2 when F is infinite-dimensional,

• to work in F ∼= Cn when F is n-dimensional (every finite-dimensional Hermitian space is a Hilbert).

(The expression E ∼= F indicates that the spaces A and B are isomorphic, hence they possess the same structure
and may be considered identical.) It is possible to work in L2 by default because F is a subset thereof anyway.

B. Dual space and generalized wavefunctions

As is shown in Appendix B, it is interesting in practice to describe some systems using functions that do not belong
to the Hilbert space, but extend it.

Thie first step in building this extension of the Hilbert space is to consider its dual spaces, which we must define.
The algebraic dual is the space of all linear forms on a vector space. The topological dual is the space of continuous
linear forms, and has a very important property:

Fréchet-Riesz Theorem. Every Hilbert space is isometrically isomorphic to its topological dual.
In other words, for every continuous linear form ψ̃ defined on a Hilbert space H, there exists a unique vector ψ

such that:

∀ϕ ∈ H ψ̃(ϕ) = ⟨ψ, ϕ⟩ (4)

and furthermore ∥ψ∥ = ∥ψ̃∥ , where the norm on the topological dual H′ is the norm subordinate to the norm on
H:

∥ψ̃∥ def
= sup

{ϕ∈H : ∥ϕ∥=1}

{
ψ̃(ϕ)

}
(5)

Thus, H′ is simply the “mirror” of H. This is the justification for the use of Dirac notation, in which the mapping
ψ 7→ ψ̃ is written |ψ⟩ 7→ ⟨ψ|. There is no ambiguity in this notation since this correspondence is bijective according to
the Fréchet-Riesz theorem. From a physical point of view, this justifies that |ψ⟩ and ⟨ψ| represent the same quantum
state, and that the distinction between the two is purely mathematical.

In finite dimensions, the algebraic dual H∗ is equal to the topological dual H′. In infinite dimension, however (and
in particular for L2), there exist non-continuous linear forms, which consequently are not normalizable (the supremum
in equation (5) does not exist). Since these are linear forms, they can still be applied to functions ϕ ∈ L2, and this is

denoted as a scalar product: Φ(ϕ)
def
= ⟨Φ, ϕ⟩ by analogy with equation (4). We “forget”, so to speak, that Φ is a linear

form that does not correspond to any wavefunction, because there is meaning in calculating its “scalar product” with
a wavefunction ϕ. For every non-continuous linear form on L2, we thus define a generalized wavefunction, which is
not a square-integrable function (and sometimes not even a function). For instance, the Dirac distribution

⟨δa, ϕ⟩
def
= ϕ(a) (6)

is a non-continuous linear form [1]. We associate it with the generalized wavefunction x 7→ δ(x− a). As explained
before, this only makes sense because we can compute its “scalar product” with a true (normalizable) wavefunction
ϕ ∈ L2:

∫
dxϕ(x)δ(x− a)

def
= ⟨δa, ϕ⟩ (7)

In Dirac notation, this distribution is denoted ⟨x|, and the associated generalized wavefunction becomes the gen-
eralized ket |x⟩. Generalized kets are not elements of the Hilbert space since they are not normalizable, and
their scalar product with another generalized ket is not defined a priori. Figure 1 illustrates that the “total” state
space, often denoted G, includes both the Hilbert space of normalizable states and the generalized kets defined by the
non-continuous bras to which they are associated.
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FIG. 1: The Hilbert space H contains the normalizable kets, to which the continuous bras (the elements of H′) are
associated. Then, to each non-continuous bra (the elements of H∗), a ket is associated that lies outside of H, and is

called a generalized ket (element of G).

If we want generalized kets (or generalized wavefunctions) to be of any use, we need to give meaning to their scalar
product with other kets (or functions). Let |ϕ⟩ be a normalizable ket, then by definition we have:

⟨x|ϕ⟩ def
= ϕ(x) (8)

To generalize the properties of the Hermitian scalar product on L2, we define:

⟨ϕ|x⟩ def
= ϕ∗(x) (9)

Moreover, we expect the {|x⟩} to form a basis of L2 since, by virtue of equation (8), their application to a function
ϕ allows us to fully characterize this function. Consequently, we want them to satisfy the closure identity:

Î =
∫

dx′ |x′⟩⟨x′| (10)

and in particular:

|x⟩ =
∫

dx′ |x′⟩ ⟨x′|x⟩ (11)

The only way to satisfy this condition is to prescribe:

⟨x′|x⟩ def
= δ(x− x′) (12)

Important Remark. We said earlier that generalized wavefunctions are not normalizable, in the sense that, not
being continuous, the supremum in equation (5) is never reached. Yet, one might think that this impossibility can be
circumvented using rule (12), which makes us want to write ⟨x|x⟩ = δ(x−x) = δ(0). This expression makes absolutely
no sense! In accordance with definition (7), the pseudo-function δ(x) only makes sense if it can be integrated, as this
amounts to applying Dirac’s delta distribution, which is a well-defined mathematical object. In other words, we are
allowed to write δ(x) only on the condition that x is an integration variable, but there is absolutely no meaning in
trying to evaluate δ at a particular point.

It follows that the expression ⟨x|x⟩ means nothing, that |x⟩ is not normalizable, and that everyone is very happy.
Finally, we define the distribution ⟨p| as the Fourier transform of the Dirac distribution ⟨x|, then associate it with

a generalized ket |p⟩, and we can compute ⟨x|p⟩ ∝ eipx/ℏ, which means that the generalized function associated with
|p⟩ is the plane wave with wavenumber p

ℏ .
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C. Dirac’s formalism

As mentioned in the introduction, the wavefunction is defined on the system’s configuration space. In all that has
preceded, we have assumed that this configuration space was 1-dimensional, meaning we considered a single particle
with only one degree of freedom. Nevertheless, all the mathematical results remain valid for a wavefunction defined
on Rn, that is, for a system with n degrees of freedom. In particular, it is true we can always work in a separable
Hilbert space.

To reason with the most generality and simplify the notation, we consider we are working in an abstract separable
Hilbert space H, whose elements are the kets denoted |Ψ⟩. We “forget”, so to speak, that these state vectors are
initially functions. Separability ensures that, if H is infinite-dimensional, then it is isometrically isomorphic to L2. If
H is finite-dimensional, it is separable anyway, so we do not lose generality.

The space G of generalized kets is never explicitly mentioned in practice. We simply speak of the state space H, but
it is important to keep in mind that generalized kets are always present and that we are always likely to use them.

II. PRODUCT SPACES

A. Definition and properties of tensor products

Let E and F be two vector spaces. We call tensor product space, and denote by E ⊗ F , the vector space
generated by all pairs (x, y) (denoted x ⊗ y) where x ∈ E and y ∈ F , with the following rules for defining scalar
multiplication and addition:

λ(x⊗ y)
def
= (λx)⊗ y

def
= x⊗ (λy) (13)

x⊗ (y1 + y2)
def
= x⊗ y1 + x⊗ y2 ; (x1 + x2)⊗ y

def
= x1 ⊗ y + x2 ⊗ y (14)

Thus, the tensor product behaves like a multiplication in the usual sense.
It is important to note that not all elements of E⊗F can be written as products x⊗y. Indeed, the sum x1⊗y1+x2⊗y2

is generally not simplifiable, and must remain written as a linear combination of tensor products.
Because of this, to obtain a basis for E ⊗ F , we must form all possible tensor products between the vectors |ei⟩ of

a basis of E and the vectors |fj⟩ of a basis of F . The product kets |ij⟩ = |ei⟩ ⊗ |fj⟩ thus form a basis for E ⊗ F .
The symbol ⊗ is usually omitted in tensor products between kets, and we write: |ij⟩ = |ei⟩ |fj⟩. This means the
dimensions multiply in a tensor product: dim(E ⊗ F ) = dimE × dimF .

Let Â be an operator on E, and B̂ an operator on F . We can then form an operator Â ⊗ B̂ that acts on E ⊗ F
(take |ψ1⟩ ∈ E and |ψ2⟩ ∈ F ):

(Â⊗ B̂)(|ψ1⟩ |ψ2⟩) = (Â |ψ1⟩)(B̂ |ψ2⟩) (15)

It is customary to extend Â (resp. B̂) to E ⊗ F by identifying Â = Â ⊗ ÎF (resp. B̂ = ÎE ⊗ B̂), where ÎF is the

identity tensor on F (resp. ÎE the identity tensor on E). We then have:

ÂB̂ = (Â⊗ ÎF )(ÎE ⊗ B̂) = (ÂÎE)⊗ (ÎF B̂) = Â⊗ B̂ = (ÎE ⊗ B̂)(Â⊗ ÎF ) = B̂Â (16)

Thus, two operators defined on different spaces always commute.
If E and F are pre-Hilbert spaces, then the inner product also extends to E ⊗ F :

(⟨ϕ1| ⟨ϕ2|)(|ψ1⟩ |ψ2⟩) = ⟨ϕ1|ψ1⟩ ⟨ϕ2|ψ2⟩ (17)

B. Many degrees of freedom state spaces

We study the tensor product because of one fundamental property:

L2(Rn+m) = L2(Rn)⊗ L2(Rm) (18)
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where L2(E) denotes the space of square-integrable functions defined on E. Notably, if we now consider a particle
moving in 3D, its wavefunction ψ(r⃗) is a square-integrable function on R3. We then have:

L2(R3) = L2(R)⊗ L2(R)⊗ L2(R) = L2(R)⊗3 (19)

Notably, a basis for the state space of a 3D particle can be obtained by forming all possible tensor products between
the three basis vectors of the 1D particle state space:

|r⃗⟩ = |x, y, z⟩ = |x⟩ |y⟩ |z⟩ (20)

Now, imagine that the system is in a state |ψ⟩ = |u⟩ |v⟩ |w⟩. We can then write:

ψ(r⃗) = ⟨r⃗|ψ⟩ = ⟨x|u⟩ ⟨y|v⟩ ⟨z|w⟩ = u(x)v(y)w(z) (21)

Saying that a state factorizes into a tensor product means that its wavefunction separates into a product of functions
of the different degrees of freedom of the system. Such a state is called separable or factorizable.

More generally, a system with n degrees of freedom admits a wavefunction in

L2(Rn) = L2(R)⊗n (22)

For example, the simplest way to represent a system of two particles is to use a Hartree product, i.e., a separable state
in the tensor product of two single-particle states, which in terms of wavefunctions gives: ψ(r⃗1, r⃗2) = ψ1(r⃗1)ψ2(r⃗2).

This form is justified if we denote Ĥ = Ĥ1 + Ĥ2 as the total Hamiltonian of the system, where Ĥ1, Ĥ2 are the
Hamiltonians of each of the two particles taken individually. Because they act on different spaces (since they correspond

respectively to r⃗1 and r⃗2, different degrees of freedom of the total system), Ĥ1 and Ĥ2 commute. Consequently, they

have a common eigenbasis. Conversely, it is easy to show that a Hartree product is an eigenstate of Ĥ: consider |ψ1⟩
an eigenket of Ĥ1 associated with energy E1 and |ψ2⟩ an eigenket of Ĥ2 associated with energy E2:

Ĥ |ψ1⟩ |ψ2⟩ = (Ĥ1 |ψ1⟩) |ψ2⟩+ |ψ1⟩ (Ĥ2 |ψ2⟩) = (E1 + E2) |ψ1⟩ |ψ2⟩ (23)

Thus, the eigenstates of Ĥ are indeed the tensor products of eigenstates of Ĥ1 and Ĥ2. But beware: this form
assumes no interaction between the two particles. The total Hamiltonian should in general be written as Ĥ =
Ĥ1 + Ĥ2 + ĤI where the interaction term depends on both r⃗1 and r⃗2 and consequently does not commute with the
other two. All we can say about the eigenstates of Ĥ in general is that they are linear combinations of tensor products
of particle 1 and particle 2 states.

An entangled state is a state that is not separable, a state that is written only as a linear combination of separable
states. Examples of entangled states will be given in the section dedicated to spin.

C. Applications to the hydrogen atom

The hydrogen atom is a two-particle system (the proton and the electron) interacting through an electrostatic
potential. By canonical reduction of the two-body system, the Hamiltonian is put in the form

Ĥ = Ĥr⃗ + ĤR⃗ (24)

where each of the two terms depends on a different variable, the radius vector of the center of mass R⃗ or the position
of the reduced mass r⃗. This form leads us to write the state space of the hydrogen atom as a product:

H = Hr⃗ ⊗HR⃗ (25)

where each of the two spaces Hr⃗, HR⃗ corresponds to three different degrees of freedom (the position of the reduced

mass and that of the center of mass, respectively). Since Ĥr⃗ and ĤR⃗ act on Hr⃗ and HR⃗ respectively, they commute
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with each other, and we seek an eigenbasis of Ĥ in the form of tensor products of eigenkets of one and the other.
ĤR⃗ is the Hamiltonian of a free particle, so its eigenfunctions are plane waves; it is then necessary to diagonalize the

reduced Hamiltonian Ĥr⃗. This Hamiltonian commutes with L̂2 and L̂z, which depend on the spherical coordinates θ
and φ. We decompose, again:

Hr⃗ = Hr ⊗Hθ,φ (26)

We then seek the eigenkets in the form |ψr⟩ |lm⟩, where the |lm⟩ are the common eigenstates of L̂2 and L̂z, which
constitute a basis of Hθ,φ, and |ψr⟩ ∈ Hr. In other words, the eigenfunctions of the reduced Hamiltonian are written
as products of a radial function and a spherical harmonic.

III. SPIN STATES

A. Pauli’s theory of spin

Spin is an intrinsic degree of freedom of quantum systems. Consequently, to account for it, we must take the tensor
product of the orbital state space Ho, the space of spatial wavefunctions that we have manipulated so far, with a new
space Hs, the space of spin states:

H = Ho ⊗Hs (27)

Spin as a physical quantity is described by a vector observable
ˆ⃗
S that acts on Hs. It is an angular momentum, which

means that Sx, Sy, and Sz obey the following commutation relations (where εijk denotes the Levi-Civita symbol):

[Si, Sj ] = iℏεijkSk (28)

In particular, the operators Ŝ2 and Ŝz commute and thus possess a common eigenbasis |sms⟩, where s denotes the
spin quantum number and ms the magnetic spin quantum number [2]:

Ŝz |sms⟩ = ℏms |sms⟩ (29)

Ŝ2 |sms⟩ = ℏ2s(s+ 1) |sms⟩ (30)

s can only take positive integer or half-integer values; the different possible values of ms differ by an integer and
are bounded by −s ≤ ms ≤ s. Quantum systems with integer spin are called bosons, and those with half-integer spin
are called fermions.

The electron, in particular, is a particle with spin s = 1/2. The spin state space of an electron is therefore 2-
dimensional, generated by the two kets: the spin down state

∣∣ 1
2 − 1

2

〉
and the spin up state

∣∣ 1
2 + 1

2

〉
, often denoted

|−⟩ and |+⟩, or |↓⟩ and |↑⟩ respectively.
Since these two states form a basis of Hs, the total state of the electron can be written as |ψ⟩ = |ψ+⟩ |↑⟩+ |ψ−⟩ |↓⟩,

where |ψ+⟩ and |ψ−⟩ are orbital states, elements of Ho. It can also be written in the form of a wavefunction
ψ(r⃗, ε) = ψ+(r⃗)

1+ε
2 + ψ−(r⃗)

1−ε
2 , where ψ+ and ψ− are spatial wavefunctions, and ε is a discrete variable that can

take the values +1 or -1.
Performing a measurement of the electron magnetic spin number amounts to projecting |ψ⟩ onto an eigenstate of

Ŝz, i.e., applying one of the following projectors:

P̂+ =

∫
d3r⃗ |r⃗⟩ |↑⟩⟨r⃗| ⟨↑| =

∫
d3r⃗ |r⃗⟩⟨r⃗| ⊗ |↑⟩⟨↑| (31)

P̂− =

∫
d3r⃗ |r⃗⟩ |↓⟩⟨r⃗| ⟨↓| =

∫
d3r⃗ |r⃗⟩⟨r⃗| ⊗ |↓⟩⟨↓| (32)

The probability of measuring the electron in the spin-up state is therefore ⟨ψ|P̂+|ψ⟩ =
∫
d3r⃗ |ψ+(r⃗)|2, and in the

spin-down state ⟨ψ|P̂−|ψ⟩ =
∫
d3r⃗ |ψ−(r⃗)|2.
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To simplify the writing of the electron wavefunction and focus on its spatial dependence, it is customary to write
it in the form:

ψ(r⃗) =

[
ψ+(r⃗)
ψ−(r⃗)

]
(33)

Such an object is called a Pauli spinor.

B. Spin of the two-electron system: indistinguishability and entanglement

Let us now study the spin states accessible to a system of two electrons. The spin space of the system is none other
than the tensor product Hs1 ⊗ Hs2 of the spin spaces of each of the two electrons. It is therefore a 4-dimensional
space, for which we can provide a basis of product states: |↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩ (where |↑↑⟩ = |↑⟩ |↑⟩, etc.). However,

these kets are not necessarily eigenstates of Ŝ2, where
ˆ⃗
S =

ˆ⃗
S1 +

ˆ⃗
S2 is the total spin observable.

It is not very difficult to diagonalize Ŝ2, which gives the following eigenbasis (S and MS denote the total spin
quantum number and the total magnetic spin quantum number, respectively):

|S = 0,MS = 0⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩) (34)

|S = 1,MS = 1⟩ = |↑↑⟩ , |S = 1,MS = 0⟩ = 1√
2
(|↑↓⟩+ |↓↑⟩) , |S = 1,MS = −1⟩ = |↓↓⟩ (35)

The first state (with spin 0) is called a singlet state. The following three states (with spin 1) are called triplet states.
Unlike the product states, these eigenstates are either symmetric (the triplet) or antisymmetric (the singlet) under the
exchange of the two electrons. This is explained by the indistinguishability of particles: unlike two classical particles
whose trajectories can be followed, two identical quantum particles cannot be labeled, since their wavefunctions
“mix” completely (this is still a naive description: the “two wavefunctions” do not actually mix since there is only
one wavefunction for the whole system).

Performing a measurement of S or MS (thus projecting the system into an eigenstate) should not allow the two
electrons to be distinguished. If |↑↓⟩ were an eigenstate into which the system was projected, one could say upon
seeing the measurement result, “the spin of electron 1 is up and the spin of electron 2 is down”.

For two of the eigenstates (those with magnetic number 0), indistinguishability is ensured by the fact that these
are entangled (non-separable) states. This is again a purely quantum phenomenon: the two electrons can be very far
apart, but if the spin of one is measured, the spin of the other is instantly determined.

For example, suppose the system is in the state 1√
2
(|↑↓⟩ − |↓↑⟩), but the two electrons are now spatially separated.

We measure the spin of the first electron and find it to be up (there is a 50% chance). The system is projected into
the state |↑↓⟩, so despite the distance separating them, the spin of the second electron instantly becomes down.
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Appendix A: Reminders of linear algebra and related topology

A metric space is a vector space endowed with a distance, so the notion of limit is well-defined.
F is called a dense subset of E if each vector in E is the limit of a certain sequence of elements of F . A topological

space is termed separable if it contains a dense countable subset. The separability of a Hilbert space ensures the
existence of a Hilbert basis, even when the space is infinite-dimensional. A Hilbert basis is the generalization to
infinite-dimensional spaces of orthonormal bases: each vector in the Hiblert space can be uniquely decomposed as a
series of weighted elements of the Hilbert basis, and the basis elements are unitary and orthogonal to one another.
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A Cauchy sequence is a sequence in which the elements are all progressively getting arbitrarily close to one another,
so that every converging sequence is also a Cauchy sequence. A metric space is said to be complete if every Cauchy
sequence converges in it. Morally, it is a space where all holes have been “filled”: Q is not complete, but R is. R is
constructed by adding to Q the limits of all rational Cauchy sequences, i.e. by completing Q.

Appendix B: Discrete and continuous spectra

This appendix is a discussion on the nature of the Hamiltonian’s spectrum, where we justify the use of non-
normalizable functions. Let us consider a particle of mass m evolving in a 1-dimensional potential V (x), such that
V (x) −→

x→∞
V∞. The quantum-mechanical problem consists in solving the stationary Schrödinger equation:

−ℏ2

2m
∇2ϕ(x) + V (x)ϕ(x) = Eϕ(x) (B1)

which becomes at infinity:

∇2ϕ(x→ ∞) +
2m

ℏ2
(E − V∞)ϕ(x→ ∞) = 0 (B2)

To solve this asymptotic Schrödinger equation, we need to distinguish between the possible energy regimes:

• if E < V∞, then ϕ(x) ∼
x→±∞

exp

(
∓
√

2m(V∞−E)

ℏ x

)
;

• if E > V∞, then ϕ(x) ∼
x→±∞

exp

(
∓i

√
2m(E−V∞)

ℏ x

)
.

The first case is that of a bound state, where a classical particle would be trapped in the potential. ϕ is a vanishing
wave, so the quantum particle can escape, but with an exponentially decreasing probability, and a penetration length
proportional to the particle’s de Broglie wavelength λ = h/

√
2m(V∞ − E). The exponential damping ensures the

normalizability of the wavefunction; in this case, the spectrum is discrete and the energy eigenstates are Hilbert space
kets.

The second case is that of a scattering state, where a classical particle is able to escape the potential. ϕ is a plane
wave, so the quantum particle is delocalized at infinity, and is better described as a probability current proportional
to the particle’s de Broglie frequency ν = v/λ. Such a function is not normalizable; in this case, the spectrum is
continuous and the energy eigenstates are generalized kets.

This simple but very general argument shows that generalized kets (such as plane waves or Dirac deltas) are
necessary to correctly describe quantum scattering states.

Of course, such generalized wavefunctions are not physical states, but physical (normalizable) states can be formed
as wavepackets, superpositions of generalized wavefunctions.
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