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Matter exhibits wave-like properties at the microscopic scale, leading to scattering phenomena
similar to those observed with light. This paper introduces a modeling methodology for predicting
the scattering of quantum objects through surfaces using the Eikonal approximation in conjunction
with binary potentials, and apply this methodology to electron scattering through graphene.

INTRODUCTION

Matter exhibits wave-like properties at the microscopic
scale, resulting in scattering phenomena similar to those
observed with light. This phenomenon has been experi-
mentally demonstrated numerous times, notably in 1927
with the first diffraction of an electron beam through a
thin film of platinum.

We will begin by introducing a method for predicting
the intensity of scattering peaks, relying on the WKB and
the Eikonal approximations. Furthermore, to be able to
apply this method we will need the interaction potential
between the surface and the incoming object, for this
we will use the binary potential approximation. As an
example, this methodology will be applied to the case of
electron scattering through graphene.

I. PREDICTING THE INTENSITY OF
SCATTERING PEAKS

A. Hamiltonian in Scattering Theory

In quantum mechanics, it is usual to begin by writing
the Hamiltonian of the considered system. In the case of
scattering, under the approximation that the scatterer is
fixed, it is expressed as follows:

Ĥ =
p̂2

2m
+ Ŵ (x, y, z), (1)

where m is the incident object mass and Ŵ (x, y, z) is
the interaction potential between the two objects under
consideration.

B. Normal Incidence Surface Scattering: A
Far-Field Solution

In this section, we will solve Schrödinger equation cor-
responding to Hamiltonian (1) for the case of an elastic
collision with a periodic surface, such as graphene.
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Firstly, noting that W (x, y, z) is periodic in the (x, y)
plane, we can assume that the wave function in the far-
field will take the form of a Bloch wave with a phase
denoting the lattice periodicity. Let’s therefore try a so-
lution of the form:

ψ(x, y, z) = exp (ikzz)︸ ︷︷ ︸
ψi

+exp (iQ · ρ)χ(z)︸ ︷︷ ︸
ψs

, (2)

where Q and ρ are the reciprocal lattice vector and
the real lattice vector parallel to the surface, respectively.
Substituting this Ansatz into (1) yields:

[
∂2z + k2x,y(z)

]
χ(z) = 0, (3)

where:

k2x,y(z) = k2z − ∥Q∥2 −
2m

ℏ2
W (x, y, z). (4)

Here, k2x,y(z) can be interpreted as a screened wave
vector. To proceed with our calculations, we will assume
that W (x, y, z) varies slowly with z (WKB approxima-
tion). Thus, a good Ansatz for a solution is:

χ(z) = exp

(
i

∫ z

−∞
kx,y(z

′)dz′
)
. (5)

Furthermore, if we assume that the kinetic energy is
significantly greater than the potential energy, implying
that the trajectory is only weakly influenced by it, we
have ℏ2k2z/2m ≫ W (x, y, z) ≫ ℏ2 |Q|2 /2m and kz ≈ k′z
(Eikonal approximation). This leads to:

χ(z) ≈ exp

(
i

[
kzz −

m

ℏ2kz

∫ z

−∞
W (x, y, z′)dz′

])
. (6)

Moreover, it is known that in the far-field the scattered
wave function must be of the form [1]:

ψs(x, y, z) =
∑
n,m

Cn,m exp (i(k′zz +Q · ρ)) . (7)

Thus, by again applying the Eikonal approximation to
(7) and by equating both far-field solutions. It is easy to

see that the intensity In,m = |Cn,m|2 is given by:
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In,m =

∣∣∣∣∣∣ 1A
∫∫
Ω

dxdy←→x ←→y exp

− i

ℏvz

∫
R

W (x, y, z′) dz′

∣∣∣∣∣∣
2

(8)
where A is the surface of the unit cell Ω, vz = ℏkz/m

and
←→
j = exp (−iQ · j) with j ∈ {x,y}. This expression

for the intensity is reminiscent of the Fraunhofer equation
for the far-field intensity of light diffraction.

II. INTERACTION POTENTIAL FOR
ELECTRONIC SCATTERING

As we can see in (8), we need the interaction potential
to compute the intensity. However, the interaction be-
tween the surface and an incoming object is too complex
to be computed analytically, so one might approximate
this interaction. In this section, we will examine the bi-
nary potential approximation, which suggests that the
total potential can be approximated by the superposi-
tion of the potentials between each surface atom and the
incident electron. First, let’s start by deriving the scat-
tering factor in the first-order Born approximation, which
will allows us to derive the binary interaction potential
for electronic scattering.

A. Scattering factor

In this section, we will consider the scattering of elec-
trons onto a single atom. Let’s start with Schrödinger’s
equation for a two-particle system [2]:

(
Ĥ0 + Ŵ

)
|ψ⟩ = Ê |ψ⟩ . (9)

Here, Ŵ is the interaction potential, Ĥ0 is the free
particle Hamiltonian. By reordering this equation, we
obtain:

(
Ê − Ĥ0

)
|ψ⟩ = Ŵ |ψ⟩ . (10)

We hope that this operator is invertible such that:

|ψ⟩ = Ŵ

Ê − Ĥ0

|ψ⟩ . (11)

However, here we might encounter poles, thus we will
add a regulator to be able to perform this integral.

∣∣ψ±〉 =
Ŵ

Ê − Ĥ0 ± iε
∣∣ψ±〉 . (12)

Here, the ± sign denotes causality. A positive sign rep-
resents the causal Green function, where waves emanate
from the source and propagate outward to infinity, while
a negative sign represents the anti-causal Green function,
where waves originate from infinity and move inward to-
ward the source. We will concentrate on the + case, as
our interest is in scattered states.

Ĝ+ =
1

Ê − Ĥ0 + iε
, (13)

is known as the free particle Green function. Since
our incoming particle is a plane wave, when Ŵ → 0, we
should smoothly fall back to a plane wave, thus, (11)
becomes:

∣∣ψ+
〉
= |ϕk⟩+ Ĝ+Ŵ

∣∣ψ+
〉
. (14)

Where |ϕk′⟩ is the free particle Schrödinger equation
solution. Premultiplying by ⟨r|:

ψ+(r) = ϕk(r) + ⟨r| Ĝ+Ŵ
∣∣ψ+

〉
, (15)

and by using the resolution of the identity:

ψ+(r) = ϕk(r) +

∫
dr′ ⟨r| Ĝ+Ŵ |r′⟩

〈
r′
∣∣ψ+

〉
. (16)

Which can be simplified as:

ψ+(r) = ϕk(r) +

∫
dr′ ⟨r| Ĝ+ |r′⟩W (r′)ψ+(r′). (17)

We also know that ⟨r| Ĝ+ |r′⟩ is equal to (Refer to ap-
pendix (A)):

⟨r| Ĝ+ |r′⟩ = −2m

ℏ2
exp (+ik∥r− r′∥)

4π∥r− r′∥
. (18)

Which, when, ∥r′∥ ≪ ∥r∥ is approximated as:

⟨r| Ĝ+ |r′⟩ ≈ −2m

ℏ2
exp (+ikr − ik′ · r′)

4πr
. (19)

This approximation is justified if we consider the de-
tector to be far away. Plugging it back into (17):

ψ+(r) = ϕk(r)

−
∫

dr′
2m

ℏ2
exp (+ikr − ik′ · r′)

4πr
W (r′)ψ+(r′). (20)

Which can be simplified as:
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ψ+(r) =
1

(2π)3/2

(
exp (ik · r)

− 2m

ℏ2
(2π)3

4π

exp (+ikr)

r

∫
dr′

exp (−ik′ · r′)
(2π)3/2

W (r′)ψ+(r′)
)
.

(21)

We will define the scattering factor f(k,k′) as:

f(k,k′) = −2m

ℏ2
(2π)3

4π

∫
dr′

exp (−ik′ · r′)
(2π)3/2

W (r′)ψ+(r′)

= −2m

ℏ2
(2π)3

4π
⟨ϕk′ | Ŵ

∣∣ψ+
〉
. (22)

Finally, by premultiplying equation (14) by Ŵ , we ob-
tain:

Ŵ
∣∣ψ+

〉
= Ŵ |ϕk⟩+ Ŵ Ĝ+Ŵ

∣∣ψ+
〉

= Ŵ |ϕk⟩︸ ︷︷ ︸
1st order

+Ŵ Ĝ+Ŵ |ϕk⟩

︸ ︷︷ ︸
2nd order

+ . . . (23)

We see that this is a perturbative expansion. In our
case, we will consider the first-order Born approximation,
which involves taking only the first-order term. This ap-
proximation is valid for high-energy scattering, similar to
the Eikonal approximation. However, it is particularly
useful because it directly yields the Fourier transform of
the potential:

f(k,k′) = − m

2πℏ2

∫
dr′ exp (i(k′ − k) · r′)W (r′), (24)

which can be rewritten as:

f(Q) = − 1

2πa0e2

∫
dr′ exp (iQ · r′)W (r′), (25)

where Q is the momentum exchanged during scatter-
ing.

B. Interaction potential

We see that if we were able to find an expression for
f(Q), we could extract the interaction potential via in-
verse Fourier transform. Fortunately, parametrization of
f(Q) for electron scattering on an atom can be found in
the literature [3]:

f(Q) =

3∑
i=1

ai
∥Q/2π∥2 + bi

+

3∑
i=1

ci exp
(
−di∥Q/2π∥2

)
,

(26)

where the coefficients ai, bi, ci, di can be found in [3].
Finally, by performing the inverse Fourier transform, we
obtain an expression for the interaction potential between
an electron and an atom:

W (r) =− 2π2a0e
2

3∑
i=1

ai
r
e−2πr

√
bi

− 2π5/2a0e
2

3∑
i=1

cid
−3/2
i e−π

2r2/di , (27)

with r =
√
x2 + y2 + z2.

III. APPLICATION: SCATTERING OF
ELECTRONS THROUGH GRAPHENE

In this section, we apply earlier derivations to numer-
ically predict the scattering pattern of electrons through
graphene. Graphene is a two-dimensional surface com-
posed of carbon atoms. We define our unit cell as illus-
trated below:

FIG. 1. Unit cell for the graphene layer.

The aforementioned parametrization coefficients for a
carbon atom are the following:

i ai (Å
−1

) bi (Å
−2

) ci (Å) di (Å
2
)

1 0.212080767 0.208605417 0.199811865 0.208610186
2 0.168254385 5.57870773 0.14204836 1.33311887
3 0.363830672 3.80800263 0.000835012 0.040398262

TABLE I. Parametrization coefficients for a carbon atom.
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Plotting the electric atomic potential, defined as
V (r) = − 1

eW (r), yields:

FIG. 2. Electric potential V (r) of a carbon atom.

From this potential, it becomes possible to construct
the potential of the unit cell. By numerically integrating
this potential along z, we obtain:

FIG. 3. Electric potential V (r) of a graphene layer.

Finally, we now have all the necessary elements to com-
pute the intensity of the scattering peaks using equation
(8). By convolving each peak with a Gaussian, we obtain:

FIG. 4. Normalized scattering peaks’ intensity of a 10 keV
electron through graphene.

However, our method does not provide information
about the spacing between peaks, only their intensity.
Thus, the spacing between them is arbitrary.

CONCLUSION

To summarize, by employing multiple approximations,
one can obtain the intensity of scattering peaks in the far-
field at the cost of an interaction potential. In the case
of electron scattering, a semi-analytical method exists to
approximate this potential, where the coefficients are de-
termined numerically. Using these methods, we were able
to predict the scattering of an electron through graphene.
However, when it comes to predicting atom-surface

scattering, the situation isn’t analytical anymore. Con-
sequently, only a few approaches exist to determine the
atom-surface interaction potential, including:

1. Empirical binary potentials (e.g., Lennard-Jones,
Morse)

2. Binary potentials derived from Density Functional
Theory (DFT)

3. Full DFT potentials

However, the last approach is often too computation-
ally intensive to be fully achieved.
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Appendix A: Free particle Green function in
position representation

In this section we are going to prove relation (18)
Firstly let’s remind ourselves of the Green function op-
erator:

Ĝ+ =
1

Ê − Ĥ0 + iε
. (A1)

We desire to evaluate the matrix element ⟨r| Ĝ+ |r′⟩,
let’s start by inserting a resolution of the identity [2]:

⟨r| Ĝ+ |r′⟩ = ⟨r| Ĝ+

∫
dk′ |ϕk′⟩ ⟨ϕk′ |r′⟩

=
1

(2π)3
⟨r| Ĝ+

∫
dk′ |ϕk′⟩ exp (−ik′ · r′)

=
1

(2π)3

∫
dk′ ⟨r| 1

Ê − Ĥ0 + iε
|ϕk′⟩ exp (−ik′ · r′) .

(A2)

Knowing that Ĥ−1
0 |ϕk′⟩ = 2m/ℏ2k′2 and by doing a

change of variable of E as ℏ2k2/2m:

=
2m

(2π)3ℏ2

∫
dk′ ⟨r| 1

k2 − k′2 + iε
|ϕk′⟩ exp (−ik′ · r′)

=
2m

(2π)3ℏ2

∫
dk′ 1

k2 − k′2 + iε
exp (ik′ · (r− r′))

=
2m

(2π)2ℏ2

∫ +∞

−∞
dk′

k′

i∥r− r′∥
exp (ik′∥r− r′∥)
k2 − k′2 + iε

. (A3)

We can rewrite this integral as a contour integral. The
contribution from the semicircular complex contour at

infinity vanishes because the integrand decays sufficiently
fast as |k′| → ∞ (for complex-valued k′). Therefore, we
can extend the integral from the real axis to the complex
plane by considering a suitable contour that encircles the
poles. Such contour is drawn below:

Re(k′)

Im(k′)

√
k2 + iε

−
√
k2 + iε

FIG. 5. Complex k′ plane with integration contours and poles.

We will consider the blue semicircle as our contour:

⟨r| Ĝ+ |r′⟩ = 2m

(2π)2ℏ2

∫ +∞

−∞
dk′

k′

i∥r− r′∥
exp (ik′∥r− r′∥)
k2 − k′2 + iε

=
2m

(2π)2ℏ2
2π

∥r− r′∥
Res{k′ exp (ik

′∥r− r′∥)
k2 − k′2 + iε

,
√
k2 + iε}

= − m

2πℏ2
exp (ik∥r− r′∥)
∥r− r′∥

. (A4)

Which concludes the proof.
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