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As of the academic year 2023-2024, Seconde (10th grade) students are required to complete an
internship in a private or public organization. Laboratories and research institutions are solicited
to host some of these interns, but it appears difficult to provide them with scientific knowledge
affordable at their educational level. This paper summarizes efforts made at the Quantum Chemistry
Laboratory of Strasbourg to teach the basics of Quantum Mechanics and Chemistry to two Seconde
students that interned there. The scientific content of the internship included the shell model of
the atom, Lewis’ theory of the chemical bond, the postulates of Quantum Mechanics, the two-level
system, and a discussion of various approaches to chemical bonds and reactions.

INTRODUCTION

In the French education system, the class of Seconde
(corresponding to the 10th grade) is the first year of the
Lycée (roughly corresponding to High school), immedi-
ately followed by the classes of Première (11th grade) and
Terminale (12th grade). Since 2024, Seconde students
are required to complete a two-week internship in a cho-
sen organization or institution. The Quantum Chemistry
Laboratory of Strasbourg hosted two of these interns at
the end of academic year 2023-2024.

We are faced with two major difficulties when intro-
ducing Quantum Mechanics to Seconde students. On the
one hand, their lack of mathematical knowledge forces us
to work with hardly more than vectors (in two or three
dimensions) and functions (from R to R). Indeed, deriva-
tives, integrals, matrices and complex numbers are only
taught in Première and Terminale. On the other hand,
their lack of knowledge in physics prevents us from us-
ing Newtonian Physics as a basis onto which Quantum
Mechanics can be elaborated, since Newton’s Laws of mo-
tion are not tackled before Terminale. This is of course a
huge drawback, as the usual way to introduce Quantum
Mechanics consists in quantizing Classical Hamiltonians,
and in using wavefunctions that obey a complex differ-
ential equation (the Schrödinger Equation) [1].

It would have been possible to discuss some simple ex-
periments only (like Young’s double-slit interferometer),
and avoid diving into theoretical details. This is besides
the usual path taken by popular science, but such an ap-
proach cannot lead us very far, notably when we want
to explain the quantum nature of chemical phenomena
[2], and it seemed more interesting to take advantage of
the full-time two-week presence of the interns to provide
them with a true introduction to quantum theory.

The structure of this paper follows the steps of the in-
ternship. In the first instance, as recalled in Section I,
we presented the atom’s shell model and Lewis’ chemical
bond theory [3], which can be applied without any refer-
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ence to the principles of Quantum Mechanics, but where
quantum effects can be detected. Comparison with ex-
periment led us to look for a more advanced theory of
quantum phenomena.
Section II begins with the introduction of general

n-dimensional vectors and matrices, and shows how
such simple mathematical tools (quite accessible to Sec-
onde students) can be used to present the postulates
of Quantum Mechanics, with the notable exception of
the Schrödinger Equation (dynamics will not be tackled
here). As an illustration, we diagonalized the two-level
system Hamiltonian and, interpreting it as two spatially
separated hydrogen atoms, used it as a model to justify
the formation of bonding orbitals between the two atoms,
and thus the formation of the H2 molecule.
Quite surprisingly, this already busy agenda was com-

pleted during the first week of the internship. We de-
cided to further the lesson on the chemical bond by dis-
cussing covalent bond formation from different points of
view that all reveal quantum effects (see Section III).
The interns were also involved in other activities (pro-

gramming courses, lab visits, scientific seminars, etc.),
but we will not discuss them here, as it goes beyond the
scope of this paper, namely the teaching of Quantum
Physics.
This paper will not address the physics itself, as the

reader is assumed to be familiar with Quantum Mechan-
ics, but rather the strategies that can be enforced to teach
this physics to Seconde students.

I. THE QUANTUM NATURE OF ATOMS AND
MOLECULES

Our first task was to put Quantum Mechanics in the
zoology of physical theories, to make the interns un-
derstand what Quantum Mechanics is and what it is
not. For this purpose, we explained the genealogy of
physical theories as represented in Fig. 1, starting with
the XIXth century (Thermodynamics, Classical Mechan-
ics and Electromagnetism), immediately followed by the
1905 annus mirabilis (Special Relativity and Quantum
Mechanics), which led to further developments in the
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XXth century (Quantum Field Theory and General Rela-
tivity). In the light of this historical explanation, Quan-
tum Mechanics is correctly delineated as the theory of
small objects with low speed.

Time

Thermodynamics Newtonian 
Mechanics Electromagnetism

Quantum 
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FIG. 1: Simplified genealogy of modern physical
theories (superstring theories can be added at the top
as they are a prominent subject in popular science).

Then, we began our journey through quantum theory
by explaining a few historical models of the atom, culmi-
nating in the shell model. We introduced the four atomic
quantum numbers, Pauli’s exclusion principle, the aufbau
rule and Hund’s rule. With this, valence calculations are
made possible, and Lewis’ covalent bond theory can be
easily tackled, together with the concepts of single elec-
trons, (non-)bonding pairs and double bonds. It is inter-
esting to emphasize the definition of a covalent bond as
a sharing of two electrons. Indeed, Classical Mechanics
cannot make sense of this, and the quantum concept of
delocalization is needed for the first time.

This exposition must be concluded by presenting some
deficiencies of the atomic shell model and Lewis’ subse-
quent theory. First, a number of elements violate the
aufbau rule (e.g. chromium and other elements from the
4th period and above). Indeed, a general atomic state
should be seen as a quantum superposition of configura-
tions, and not as a single configuration.

Secondly, there are inconsistencies in Lewis’ theory,
as carbon (for instance) should have one non-bonding
pair (the 2s electrons) and two single electrons (the 2p
ones). Instead, all valence shell electrons are considered
equivalent when applying Lewis’ theory, and carbon has
four single electrons, which is confirmed by experiments.
Chemists account for this change of orbitals with hybridi-
sation theory, betraying changes in the shell structure
when the atom interacts with electrons from other atoms.

Finally, a famous limitation of Lewis’ theory is me-
somerism, when several Lewis structures must be used
to describe a molecule completely. A typical example is
benzene, whose possible Lewis structures show an alter-

nation of simple and double bonds:
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However, experiments reveal that all bonds are equiv-
alent (they have the same length and the same strength).
This shows that electrons can be delocalized between
more than two atoms, questioning the very concept of
covalent bond as it is defined by Lewis’ theory.

II. INTRODUCTION TO QUANTUM
MECHANICS

This is where difficulties begin. Section I was intended
to be a simple introduction to some quantum effects,
leading us to conclude that a better theory of the quan-
tum world is needed to obtain a correct depiction of
atoms and molecules. However, discussing wavefunctions
seems impossible, as we would need to introduce deriva-
tives for some of the operators, integrals for expectation
values, or complex numbers for the Schrödinger equation.
Fortunately, there is quite a profusion of different formu-
lations of Quantum Mechanics, and it appeared to us
that the matrix formulation could prove simple to teach
as well as a convenient way to introduce most concepts
of Quantum Chemistry.

A. Vectors and matrices

And so we defined n-dimensional vectors and square
matrices as collections of (real) numbers ordered in ta-
bles:

v =


v1
v2
...
vn

 ; M =

M11 · · · M1n

...
. . .

...
Mn1 · · · Mnn

 (1)

Then, we explained how such objects can be added and
multiplied, insisting on non-commutativity and on the
interpretation of square matrices as functions associating
a vector to another vector.

After a few exercises, we also discussed transposition
and its properties (e.g. cyclic reordering), leading us to
defining covectors as collections of numbers ordered in a
line table:
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v1
v2
...
vn


T

=
[
v1 v2 · · · vn

]
(2)

Then, the inner product of vectors can be defined as:

u · v = uT v = u1v1 + u2v2 + · · ·+ unvn (3)

From there, Dirac notation is introduced without diffi-
culty: kets are vectors, bras are covectors, operators are
square matrices and all products are matrix products (we
did not use direct products in this internship, so expres-
sions like |ϕ⟩⟨ϕ| were not discussed, although they could
have been introduced symbolically from their effect on
bras and kets).

B. The postulates of Quantum Mechanics

This is all the mathematical apparatus we need. The
postulates of stationary Quantum Mechanics (i.e. ex-
cluding the Schrödinger Equation) can be successfully
taught from this point. Throughout this presentation, it
is very important to insist on the connection with experi-
ment and measure. The postulates are not mathematical
abstractions!

Postulate I. The state of a quantum system is com-
pletely characterized by a state vector. “Completely
characterized” will be precised by the following postu-
lates. Collinear vectors determine the same quantum
state, hence the normalization, and the zero vector is
not a quantum state.

Postulate II. Each physical observable is represented
by a symmetric operator, in the sense that measurable
quantities are precisely its eigenvalues. Of course, eigen-
values and eigenvectors need to be defined! Eigenvec-
tors with different eigenvalues are orthogonal. A n-
dimensional operator has exactly n orthogonal eigenvec-
tors. |1s⟩, |2s⟩, etc. are energy eigenstates of the hy-
drogen atom (this remark is important, as it makes the
connection with Section I).

Postulate III is Born’s rule. This postulate allows
us to justify the normalization condition and to interpret
eigenstates as states in which the observable’s value is
known with certainty. The concept of superposition is
introduced in opposition to eigenstates. (A small exercise
is relevant at this point to apply the first three postulates
to an example quantum state.)

Postulate IV describes spontaneous collapse. This
is one of the great strangenesses of Quantum Mechanics:
why is superposition destroyed by observation?

Postulate V would be the Schrödinger Equation. We
can explain that finding the energy eigenstates is the cen-
tral problem of Quantum Mechanics, since solving it also
yields the time evolution of quantum states.

At this point, a “general quantum mechanical method”
should be laid out for the students. The main idea of such
a method is to decompose the reasoning on a quantum
system in (more or less) the following steps:

1. A system is described by its Hamiltonian, so we
need to write it, but learning how it can be con-
structed is out of the internship’s scope, so the in-
terns will always be given the Hamiltonian.

2. We compute the eigenenergies and associated
eigenvectors. Unfortunately, there is no general
method to perform this computation. An example
will be given in Section IIC.

3. A ket |ψ⟩ be given, we can decompose it as a super-
position of energy eigenvectors. The coefficients are
obtained through inner products and their square is
the probability of measuring the associated energy.

4. For a different observable, the same ket admits a
different decomposition as a superposition of eigen-
vectors. The coefficients are still obtained through
inner products and their square is now the proba-
bility of measuring the associated observable eigen-
value.

C. The two-level system

These postulates must be illustrated by working on a
simple example. With the sole mathematical tools from
Section IIA, it is possible to solve the eigenvalue problem
of a two-level system.
The two-level system is explained as consisting of two

sites that each contain an atom. An electron is allowed
to travel between them, so the system can be either in
state |0⟩ (if the electron is in site 0 located at x = −1) or
in state |1⟩ (if the electron is in site 1 located at x = +1).
In this situation, |0⟩ and |1⟩ are position eigenstates. The
interns may be asked to check that the position operator
is of the form:

X̂ =

[
−1 0
0 +1

]
(4)

This tests their understanding of the eigenvalue prob-
lem (postulate II).
Then, two cases are successively examined. First, we

assume that the two sites are non interacting, and we fill
them with, for instance, a hydrogen atom of energy ε0 =
−13.6 eV and a lithium atom of energy ε1 = −122 eV.
Analogously, the interns can be asked to justify that the
Hamiltonian is of the form:

Ĥ =

[
ε0 0
0 ε1

]
(5)
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They must not only follow the same reasoning as for
X̂, but also explain that, in this case, |0⟩ and |1⟩ are also
energy eigenstates.

As a second case, we can add an interaction between
the sites. For simplicity, we suppose both sites to be
occupied by a hydrogen atom of energy ε = −13.6 eV,
interacting through a coupling −J , yielding a Hamilto-
nian:

Ĥ =

[
ε −J
−J ε

]
(6)

the interns’ attention may be drawn to the appearance
of off-diagonal terms to represent the interaction.

Because we are working in 2D, the eigenvalue equation
consists of two real equations, which can be interpreted
as two geometrical straight lines. Now, two situations
are possible: either these lines cross in a single point,
or they are parallel. The system is easy to solve in the
first situation, showing that the lines cross at the ori-
gin. However, we have already said that the zero vector
is not a quantum state, indicating that this situation is
impossible, and thus the lines are parallel. Parallelism
can be mathematically enforced by equating the lines’
slopes. By the miracle of linear algebra, this equation is
the characteristic equation of Ĥ, and it can be solved by
the known identity:

0 = (ε− E)2 − J2 = (ε− E − J)(ε− E + J) (7)

The eigenenergies are found without introducing the
slightest notion of diagonalization theory. The eigenvalue
equation becomes a simple linear equation, and together
with the normalization condition, the eigenvectors can
be easily retrieved.

Two things in this result can be discussed. First, one of
the eigenenergies is lower than ε, leading us to conclude
that it is interesting for two interacting hydrogen atoms
to form a H2 molecule. The essential argument here is
energy minimization, a fundamental physical principle
that should be addressed with the students. Secondly,
the atomic orbitals (OAs) introduced in Section I mix
to form molecular orbitals (MOs) depicted in Fig. 2, il-
lustrating the delocalization of the electrons predicted by
Lewis’ theory (ask the interns to compute the probability
of finding the electron on either site).

E

|1s1⟩

|1σu⟩

|1σg⟩

|1s2⟩

FIG. 2: H2 molecular orbital diagram. The OMs are
formed from the hydrogen 1s AOs.

III. CHEMICAL BONDS AND CHEMICAL
REACTIONS

The discussion of Section IIC can be generalized to an
energy-based explanation of chemical bonds. Interacting
AOs combine to form MOs, some of which are lower in
energy (bonding orbitals) and some of which are higher
(anti-bonding orbitals). This explains the duet and octet
rules, along with bond order (explained also by the pres-
ence of non-bonding orbitals). These concepts are closely
connected to the ones of bonding and non-bonding pairs
in Lewis’ structures. Besides, the importance of electron
pairs is justified by spin and Pauli’s exclusion principle.

From a spatial point of view, the formation of MOs
induces the delocalization of the electrons over the whole
bond. This can help introduce the notion of overlap-
ping AOs forming covalent bonds. σ and π bonds can be
discussed, with appropriate images showing the electron
density distribution in each case. Double bonds are the
combination of a σ and a π bond, which has several conse-
quences: because of the absence of cylindrical symmetry,
double bonds cannot rotate (hence the Z/E isomerism),
and because a π bond is weaker than σ bond, double
bonds are not twice as strong as single bonds.

This gives us a basis to tackle chemical reactions. In-
deed, double bonds and negatively charged sites are the
main electron donors, whereas single bonds are more dif-
ficult to break, and so are unlikely to break and yield
their electrons. Common electron acceptors include in-
complete valence shells and positively charged sites. The
curved arrow formalism can be introduced at this point,
with simple examples from acid-base reactions, because
such reactions are tackled in Lycée.

To conclude and give further illustrations of reaction
mechanisms, Fischer esterification can be presented. It
has the advantage of pointing out that curved arrows are
indeed a formalism and not a theory, as they may be
used to explain a reaction but hardly to predict it.

CONCLUSION

Although we cannot expect Seconde students to be
fully familiar with even a real and stationary version of
Quantum Mechanics at the end of a two-week internship,
it appears possible to introduce them to the formalism of
the theory, and use it to derive a simple (but quantum)
picture of chemical bonds, molecular orbital theory and
even chemical reactions.

Moreover, it was the occasion to introduce a number
of concepts (quantum states, superposition, etc.) quite
useful when the interns were to discuss with other re-
searchers of the Laboratory, allowing them to understand
at least the main ideas of their research.
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