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Even if the Standard Model of Particle Physics is still enjoying an unprecedented success, neutrinos
remain the most enigmatic particles in the framework. The questions investigated nowadays address
the problem of mass generation and of Dirac or Majorana type particles. The aim of this article
is to present an effective method in which the Standard Model is extended to high mass dimensions
via the addition of the lowest order non-renormalizable operator and to explore the phenomenology
of the Neutrinoless Double β Decay to probe the properties of neutrinos at colliders.

INTRODUCTION

Neutrinos were discovered in 1956 [1], come in three
flavours (electron, muon and tau), have very small but
non-vanishing masses and only interact via the chiral
weak force. The chirality condition leads to right-handed
particles being unable to couple with the weak interac-
tion gauge bosons but also to more fundamental ques-
tions about the nature of neutrinos. The same way
spinors can be of Dirac or Majorana type, neutrinos
can be of either nature, which has huge consequences on
phenomenology. Neutrinos are the only particles whose
masses cannot be generated by the usual Higgs mech-
anism [2], and despite the investigations of several see-
saw mechanisms in which right-handed neutrinos acquire
heavy masses, the possibility for neutrinos to be Majo-
rana particles also allows us to imagine effective ver-
sions of the Standard Model in which new physics exists
at very high energy. In this article, we explore the phe-
nomenology of Majorana neutrinos through the addi-
tion of the Weinberg operator [3], the unique five mass
dimensional operator of the effective Standard Model.

I. RENORMALIZABLE STANDARD MODEL

The renormalizable Standard Model [4] is a relativis-
tic quantum field theory with interactions between par-
ticles described by a local Lagrangian. This Lagrangian
is invariant under the local gauge symmetry defined by
the group SU(3)C×SU(2)L×U(1)Y ; the gauge group is
spontaneously broken into SU(3)L×U(1)Q as a result of
the Higgs mechanism occuring due to the non-vanishing
vacuum expectation value of a scalar field transforming as
(1,2)1/2 under the local symmetry, and interactions are
renormalizable, which means that only interactions up to
the mass dimension 4 are allowed in the Lagrangian.
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A. Field content

The model aims at describing all interactions at the
microscopic level and classifying the existing elementary
particles into two families: bosons and fermions. The
three interactions it successfully describes are the elec-
tromagnetic, weak and strong interactions. The gauge
group is:

SU(3)C × SU(2)L ×U(1)Y (1)

where C, L, and Y refer respectively to color, left
chirality and weak hypercharge. The SU(2)×U(1) fac-
tor in the gauge group comes from the pseudo-unified
electroweak force, while the SU(3) factor corresponds to
the strong force. For the electroweak force, we introduce
ϵ k
ij the structure constants of SU(2) and g1 and g2 the
coupling constants associated to each group. The field
strengths are:

W i
µν = ∂µW

i
ν − ∂νW

i
µ + g2ϵ

i
jkW

j
µW

k
ν

Bµν = ∂µBν − ∂νBµ

(2)

where W i
µ are three massless weak bosons and Bµ is

a massless boson for the U(1) sector. For the strong
force, we need eight massless gluons gaµ, a = 1, . . . , 8,
the structure constant f c

ab and the coupling constant g3.
The field strength is thus:

Ga
µν = ∂µg

a
ν − ∂νg

a
µ + g3f

c
ab g

b
µg

c
ν (3)

The matter sector is made of massless quarks and lep-
tons described by fermionic fields with left chiral ones
transforming as doublets and right chiral ones as singlets
of SU(2)L. Quarks can have three colors correspond-
ing to the fundamental representation of su(3). Only
left-handed spinors interact with the weak force mean-
ing that weak interactions are chiral and that left- and
right-handed fermions are in different representations of
SU(2)×U(1). The index i = 1, 2, 3 for now refers to
gauge states, but they can be associated to mass states
(measured) after a transformation. The field content is:

1. left-handed quarks: QiL =

(
ui
di

)
L

(3,2)1/6
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2. right-handed quarks: uiR (3,1)2/3 and

diR (3,1)−1/3

3. left-handed leptons: we often use ℓ to denote the
flavours of leptons, we do here because we will use
i for the lepton mass eigenstates in the following

sections: LℓL =

(
νℓ
ℓ

)
L

(1,2)−1/2

4. right-handed leptons: ℓR (1,1)−1

The last ingredient is the complex scalar doublet

known as the Higgs field: H =

(
H+

H0

)
(1,2)1/2.

The quantum numbers give information about the trans-
formations under the gauge groups and are used in the
covariant derivatives

B. Lagrangian

To describe the behavior of the fields, one has to write
the total Lagrangian of the Standard Model:

LSM = LYM + Lfermion + LHiggs + LYukawa (4)

The first term LYM is the Yang-Mills term and is de-
fined using the field strength corresponding to the gauge
fields of the theory:

LYM = −1

4
BµνB

µν − 1

4
W i

µνW
jµνδij −

1

4
Ga

µνG
bµνδab

(5)
It describes the behavior of the gauge fields corre-

sponding to the fundamental forces, the contributions
including kinetic terms for the gauge fields and their self-
interactions. The second contribution is Lfermion and it
describes the dynamics of the fermions (quarks and lep-
tons) and their interactions with the gauge fields. This
part includes the kinetic terms for all the fermions as
well as their gauge covariant derivatives. The covariant
derivatives for each field depends on its hypercharge and
on the interactions it feels. We use the Pauli matri-
ces 1

2σ
i as generators in the fundamental representation

of su(2) and the Gell-Mann matrices 1
2λ

a for su(3).
Then, the various fields admit the following derivatives:

DµQ =

[
∂µ − ig3

1

2
λag

a
µ − ig2

1

2
σiW

i
µ − ig1

1

6
Bµ

]
Q

Dµu =

[
∂µ − ig3

1

2
λag

a
µ − ig1

2

3
Bµ

]
u

Dµd =

[
∂µ − ig3

1

2
λag

a
µ + ig1

1

3
Bµ

]
d

DµL =

[
∂µ − ig2

1

2
σiW

i
µ + ig1

1

2
Bµ

]
L

Dµℓ = [∂µ + ig1Bµ] ℓ
(6)

We can add to the description one last type of field to
make a parallel with the following sections: if we assume
that the neutrino is a Majorana fermion, we can add
an iso-singlet neutrino field NR that corresponds to a
right-handed sterile neutrino, that is neutral and invari-
ant under both weak and strong interactions. Its covari-
ant derivative is then simply:

DµN = ∂µN (7)

The fermion Lagrangian is then the sum of all these
contributions for each generation:

Lfermion = iQiσ̄
µDµQ

i + iuiσµDµui + idiσµDµdi

+ iLiσ̄
µDµL

i + ieiσµDµei + iN iσµDµNi

(8)
The following term LHiggs is put by hand because of

physical requirements and corresponds to the scalar po-
tential of the Higgs field. In order for the theory to be
renormalizable, the potential is chosen to be:

LHiggs = µ2H†H + λ
(
H†H

)2
(9)

This is the potential that will lead to theHiggsmecha-
nism and then the generation of the masses of the gauge
bosons once we go to the vacuum state with µ2 < 0.
What we still have to take into account are the inter-
actions between the Higgs field and the fermions. The
fermions will develop a mass as a consequence of sym-
metry breaking by coupling with both the vacuum ex-
pectation value and the dynamical field. To be gauge
invariant, these interactions are taken into account into
Yukawa couplings [5] between a left-handed fermion, a
right-handed fermion and a scalar field:

LYukawa = −(ye)ijei · LjH† − (yu)ijui ·QjH†

− (yd)ijdi ·QjH† − (yN )ijNi · LjH† + h.c
(10)

The coefficients are the Yukawa coefficients and con-
tain the coupling constants governing the strength of in-
teractions between the Higgs field and fermions. These
matrices are three-dimensional complex matrices for each
type of fermion. Then, when symmetry breaking occurs,
the Higgs field is replaced by its expectation value and
the dynamical field, and the mass of the fermions will be
generated.

II. DIRAC AND MAJORANA MASSES

In order to properly describe neutrinos, the first ques-
tion to answer is about the type of spinor to use. A spin
half particle can be described using a spinor, that obeys
the Dirac equation and has four independent compo-
nents corresponding to particles and antiparticles with
two possible helicities [6]. A spinor is defined by the way
it transforms under the Lorentz group. Experiments
tell us that only left-handed neutrinos and right-handed
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antineutrinos are involved in weak interactions, meaning
that a two-component Weyl spinor should in principle
be sufficient to describe them. The problem is that Ma-
jorana spinors also fit the job, and the two have very
different consequences on phenomenology.

A. Reminders about spinors

A particle with an electric charge is easily distinguish-
able from its antiparticle, but neutrinos are neutral so
the discussion is non-trivial. A particle that is differ-
ent from its antiparticle is described by a Dirac spinor,
with independent degrees of freedom for the two pairs of
components, while a particle that is its own antiparticle
will be referred to as a Majorana particle. As a re-
sult, all its quantum numbers vanish and this requires the
lepton and baryon number conservation to be violated.
We define properly here Weyl, Dirac and Majorana
spinors.

Consider the Dirac matrices in the usual representa-

tion γµ =

(
0 σµ

σ̄µ 0

)
, closing a Clifford algebra. As

a direct consequence, the matrices γµν = 1
4 [γ

µ, γν ] ver-
ify a Lorentz algebra that directly gives us information
on the Lorentz transformations. A Dirac spinor is an
object denoted ψD that transforms under the Lorentz
group using the γµν matrices which generate a reducible
spinor representation of the Lorentz group [7].

γµν =
1

4

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ

)
=

(
σµν 0
0 σ̄µν

)
(11)

The σµν matrices will be used to transform Weyl
spinors. To define them, we introduce the fifth Dirac
matrix γ5 = iγ0γ1γ2γ3 which satisfies:

γ5† = γ5, (γ5)2 = 1,
[
γ5, γµν

]
= 0 (12)

meaning we can build a complete set of orthogonal
projector defining:

PL =
1

2
(1− γ5), PR =

1

2
(1 + γ5), PL + PR = 1

(13)
that acts on a Dirac spinor as:

PLψD =

(
λL
0

)
, PRψD =

(
0
χR

)
(14)

These are Weyl spinors and the two projectors are
called chirality projectors. Any fermionic degrees of free-
dom can be described equally well using a left-handed
Weyl spinor or a right-handed one. By convention, all
names of fermion fields are chosen so that left-handed
Weyl spinors do not carry daggers and right-handed
Weyl spinors do. It is overwhelmingly convenient to em-
ploy two-component Weyl spinor notation for fermions,
rather than four-component Dirac spinors: the Stan-
dard Model Lagrangian violates parity, meaning that

each Dirac fermion has left- and right-handed parts
with completely different electroweak gauge interactions.
If one used four-component spinor notation, then there
would be left- and right-handed projection operators
all over the computations. The two-component Weyl
fermion notation has the advantage of treating fermionic
degrees of freedom with different gauge quantum num-
bers separately from the start.

Majorana spinors (denoted ψM ) are a peculiar kind
of four-component spinors that can be obtained from the
Dirac one by imposing a constraint:

ψM =

(
ψL

ψR

)
=

(
ψL

iσ2ψ∗
L

)
(15)

It has the same number of degrees of freedom as a
Weyl spinor although it is written in the form of a
Dirac spinor. Given a Dirac spinor, charge conjuga-
tion allows to define a new Dirac spinor:

ψ c
D =

(
−iσ2ψ∗

R

iσ2ψ∗
L

)
= −i

(
0 σ2

−σ2 0

)
ψ∗
D (16)

and a Majorana spinor is invariant under such an
operation: ψM = ψ c

M . We thus see that Majorana
fermions are very similar to Weyl fermions, but they
must satisfy a reality condition and they must be invari-
ant under charge conjugation. The charge conjugation
operation can seem confusing for a neutrino, but the neu-
tral charge of these particles makes them the only can-
didates for Majorana fermions in the Standard Model
as the charge does not allow to distinguish them. Let’s
consider a particle described by a field ψ, function of all
spacetime coordinates. The operation of charge conjuga-
tion transforms a left-handed particle into a left-handed
antiparticle, and the same for the right-handed, meaning
that it leaves the helicity and chirality unaffected:

(PL,Rψ)
c
= PL,Rψ

c = ψc
L,R = (ψR,L)

c
(17)

A confusion can come from the notation: ψL,R and
ψc

L,R have the same helicities but we deal with a parti-
cle and an antiparticle, so this is not directly the charge
conjugate but the charge-parity conjugate. We then refer
to ψL,R and ψc

L,R as CP-conjugate. Parity is defined as
usual as flipping the sign of all space coordinates, with
fermions and antifermions having opposite parities.

B. Mass definition

In the Standard Model, neutrinos are assumed to be
exactly massless, but this constraint was shattered by the
Super-Kamiokande experiment in 1998. The experiment
was able to detect electron and muon neutrinos, but what
they observed was that neutrinos seemed to disappear in
the detector: the number of expected neutrinos to be de-
tected was far lower than the theoretical prevision, and
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the hypothesis that was formulated was that neutrinos
could change flavour while propagating. The probabil-
ity of a neutrino changing type is related to the distance
travelled by the neutrino and its energy. Neutrino os-
cillation [8] arises from mixing between the flavour and
mass eigenstates: the flavour eigenstates correspond to
νe, νµ and ντ while the mass eigenstates correspond to
ν1, ν2, and ν3. Flavour eigenstates are linear combina-
tions of mass eigenstates, and since the different mass
eigenstates have different masses, they can propagate at
different speeds. This implies that the phase difference
between the mass states changes, resulting in a differ-
ent linear combination and thus a different flavour state.
Neutrinos are thus massive particles, meaning we have
to define mass terms in any Lagrangian describing them,
and choose the proper mass depending on the type of
spinor. Consider only one flavour, the Dirac Lagrangian
is easily obtained from the Dirac equation [6]:

LD = ψ (iγµ∂µ −mD)ψ, ψ = ψ†γ0 (18)

A general spinor ψ can be decomposed into its left-
and right-handed Weyl components ψ = ψL + ψR with
ψL = λL and ψR = χR. The mass term mDψψ is called
a Dirac mass term. The Dirac action we define by in-
tegration over spacetime is invariant under a global U(1)
transformation of ψL and ψR simultaneously:

ψL −→ eiαψL, ψR −→ eiαψR (19)

where α is the general parameter of the transformation.
For Majorana spinors, ψL and ψR are not indepen-
dent so if ψL transforms, then automatically ψR = iσ2ψ∗

L
transforms as e−iαψR. It is then impossible to define on
a Majorana spinor a U(1) transformation under which
the two components transform the same way at the same
time. In other words, the Majorana equation:

iσ̄µ∂µψL − imMσ
2ψ∗

L = 0 (20)

is not invariant under global U(1) symmetries, and this
means that a spin half particle carrying a U(1) conserved
charge cannot have a Majorana mass. Because we do
not know if neutrinos are Dirac or Majorana fermions,
the same goes for the mass: a Dirac mass would im-
ply that in addition with the left-handed neutrino, there
exists a right-handed neutrino. However, these right-
handed neutrinos are not seen in weak interactions and
so if they exist they must be sterile or very heavy. The
other possibility is then that neutrinos are described by
purely left-handed fields and have Majorana masses.

Consider a free field without interaction that is de-
scribed by the Dirac equation. The Dirac mass term
is thereforemDψψ, with the combination of spinors being
Lorentz invariant and hermitian. The Lagrangian has
to be real, meaning that the Dirac mass is real and the
mass term couples left- and right-handed components:

mDψψ = mD

(
ψLψR + ψRψL

)
(21)

If neutrinos are Dirac fermions, this mass is pro-
duced by the Higgs mechanism. If they are Majorana
fermions, the mass term is defined the following way [9]:

LM =
1

2

(
mMψψ

c +m∗
Mψ

cψ
)
=

1

2
mMψψ

c + h.c

=

[
1

2
mLψLψ

c
R + h.c

]
+

[
1

2
mRψc

LψR + h.c

] (22)

The problem is that nothing prevents us to deal with
particles that are a statistical mixture of both Dirac and
Majorana type, so the most general Lagrangian for a
Dirac-Majorana mass term is:

2L =
(
ψL ψc

L

)(mL mD

mD mR

)(
ψc

R
ψR

)
+ h.c (23)

with the mass matrix admitting two eigenvalues:

m1,2 =
1

2

(
mL +mR ±

√
(mL −mR)2 + 4m 2

D

)
(24)

These masses are taken to be positive. By defining the
mixing angle tan(2θ) = 2mD

mR−mL
representing the rotation

in state space to go from interaction to mass eigenstates,
we can distinguish several interesting cases:

1. θ = 45◦: mL = mR = 0 so the eigenvalues of the
mass matrix becomem1,2 = mD. This is a degener-
ate case corresponding to a pure Dirac mass term.
If the angle is slightly off and we have θ ∼ 45◦:
mD ≫ mL,mR meaning that the eigenmasses are
m1,2 ∼ mD and that the fields ϕ1,2 are almost de-
generate. This is a pseudo-Dirac case.

2. θ = 0◦: mD = 0 so the eigenmasses are purely of
Majorana type m1,2 = mL,R and we have a pure
Majorana case with associated neutrinos. Then
again, if θ ∼ 0◦: mR ≫ mD,mL and this is a very
interesting scenario because it involves a very light
left-handed neutrino as well as a very heavy right-
handed neutrino yet undetected. This is the basis
for the different see-saw models where the masses
of the left-handed and right-handed neutrinos are
inversely proportional.

There exist three main types of scenario in which left-
handed neutrinos are very light while right-handed are
very massive [10]. To explain why we only observe left-
handed neutrinos, we could simply lack energy to be able
to probe the mass of the right-handed component, and
these see-saw mechanisms are contained into the Wein-
berg operator.

III. EFFECTIVE THEORY OF
THE STANDARD MODEL

An effective field theory is a type of approximation for
an underlying theory that takes into account the appro-
priate degrees of freedom to describe the physical phe-
nomena occurring at a chosen energy scale while ignoring
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substructures and degrees of freedom at higher energies
[11]. In our case, we will approximate a physical system
by integrating out the degrees of freedom that are not rel-
evant in a given experimental setting, and instead, these
are traded for a set of effective interactions between the
remaining degrees of freedom.

A. Renormalization condition

The aim of any theory is to make predictions on de-
cay rates and cross-sections, and this is achieved using
Feynman diagrams computations relying on a set of in-
tegrals emerging from a diagram. These diagrams cor-
respond to different orders in the interaction, and renor-
malizability is a crucial criterion because it ensures that
all infinities arising from loop diagrams can be absorbed
into a finite number of redefinitions of the parameters
(couplings, masses, and fields). For a theory to be renor-
malizable, we say that the terms in the Lagrangian must
have mass dimension smaller or equal to four in four-
dimensional spacetime [12]. The Standard Model comes
with additional conservation laws that a physical interac-
tion process has to verify like charge conservation, energy
conservation, isospin conservation, but two of them are
not fundamental, and these are the lepton and baryon
number conservation. The problem with these principles
is that they cannot come from unbroken local symme-
tries, and thus are understood as accidental symmetries
of the gauge group that can be broken at higher energies.

For a reaction to conserve lepton number, the sum of
the lepton numbers before and after the reaction must be
equal. This conservation applies separately to each type
of lepton and this point is broken by neutrino oscillation.
Neutrino oscillation states that a neutrino created with
a specific lepton flavour can later be measured to have a
different flavour, meaning that at least locally, the lep-
ton number conservation does not hold as the neutrino
does not have a single flavour. For a reaction to conserve
baryon number, the sum of the baryon numbers before
and after the reaction must be equal. This law implies
that baryons cannot be created or destroyed without si-
multaneously creating or destroying an equivalent num-
ber of antibaryons. The apparent excess of baryons over
antibaryons in the Universe provides a positive clue that
some sort of physical processes may have actually vio-
lated baryon number conservation at very high energy
and is now highly suppressed [3].

The Standard Model does not contain operators that
can change the total baryon or lepton number. For
instance, terms like qqqℓ or ℓℓℓℓ (where q is a quark
and ℓ is a lepton) are not allowed because they would
violate gauge invariance or renormalizability. Higher-
dimensional operators could violate these symmetries,
but because the dimension four Standard Model does not
contain any of those terms, these numbers are conserved
in all interactions without imposing it. This conservation
is an accidental consequence of the allowed interactions

and gauge symmetries of the Standard Model.

B. Weinberg operator

The Standard Model cannot be the final answer be-
cause it cannot predict all the masses or find good can-
didates for dark matter, the only thing we have to keep
in mind is that no experimental data for now has been
able to indicate that there are signs of new physics, at
least up to energies of a few GeV. This seems to indicate
that at these energies, the fundamental degrees of free-
dom are those of the Standard Model alone, and so it is
reasonable to assume that new particles from beyond the
Standard Model are much heavier than what we mea-
sure. If this assumption is correct, physics at the weak
scale can be adequately described using effective field the-
ory methods. By considering an effective theory of the
Standard Model, the only difference is that interactions
with arbitrary large mass dimensions are allowed. These
interactions can be organized in a systematic expansion
in the operator dimensions [13]:

L = LSM +
1

Λ

n5∑
i

C
(5)
i O

(5)
i +

1

Λ2

n6∑
i

C
(6)
i O

(6)
i + . . .

= LSM +
∑
D

[
1

ΛD−4

nD∑
i

C
(D)
i O

(D)
i

]
(25)

Each O
(D)
i is a gauge invariant operator of mass di-

mension D that is built using the Standard Model field
content (a scalar has mass dimension one, a vector and
a spinor have mass dimension 1/2), nD is the number of

such operators depending on the dimension and C
(D)
i are

called Wilson coefficients and taken to be free parame-
ters for now. All the possible effects of high energy new
physics are supposed to be encoded into these new D > 4
operators, and to be consistent with weak effects, these
interactions are suppressed by appropriate powers of a
mass scale Λ. What we assume about this mass scale is
that it is greater than the vacuum expectation value of
the Higgs field.
For D = 5, there is a unique operator we can define,

which is called the Weinberg operator, which allows to
generate Majorana masses after electroweak breaking:

L5 =
C

(5)
ℓℓ′

Λ

[
H · Lc

ℓ

][
Lℓ′ ·H

]
+ h.c (26)

In this formulation, the ℓ index refers to a flavour in-
dex and the Wilson coefficient has to be chosen so that
the masses after breaking coincide with the experimen-
tal measurements. This operator is unique, it is the only
D = 5 operator satisfying the gauge invariance of each
gauge group: vanishing hypercharge, invariant contrac-
tions for both SU groups. To obtain the masses, we have
to use the definitions of the Higgs and lepton doublets as

well as the SU(2)L invariant product: H ·Lc
ℓ = HiϵijL

cj
ℓ



6

with ϵ12 = +1. Going through electroweak breaking in
the unitary gauge, the Higgs field develops a vacuum
expectation value that we expand in the unitary gauge
using the mean value v and the dynamical field h:

H ∼ 1√
2

(
0

v + h

)
(27)

The expansion of the Lagrangian yields:

L5 =
C

(5)
ℓℓ′

Λ

[
HiϵijL

cj
ℓ

][
Li
ℓ′ϵijH

j
]
+ h.c

= −
C

(5)
ℓℓ′ v

2

2Λ
νcℓνℓ′ −

C
(5)
ℓℓ′ v

Λ
hνcℓνℓ′ −

C
(5)
ℓℓ′

2Λ
hhνcℓνℓ′ + h.c

(28)

The second and third terms generate single and dou-
ble Higgs couplings with neutrinos of flavours ℓ and ℓ′.
This is a very strong prediction because in the Standard
Model, neutrinos are not able to couple with the Higgs
boson. The predicted total width of the Higgs boson
being around 4.1 MeV, the partial width associated to
these high energy interactions has to be small so that it
fits into the uncertainties of the measured width that is
already very narrow, predicting long-lived particles. The
first term then generates a Majorana mass matrix:

mℓℓ′ =
C

(5)
ℓℓ′ v

2

Λ
(29)

The purpose of this matrix is to be able to provide
information about the masses of the physical neutrinos
through its eigenvalues after rotation into the mass ba-
sis [14]. The value of the Wilson coefficient depends on
the mass we want to generate. Let’s consider the elec-
tron neutrino, whose mass is supposed to be lower than
0.07 eV. We consider the vacuum expectation value of
the Higgs boson to be v = 246 GeV. The mass matrix
element is then constrained:

mee =
C

(5)
ee v2

Λ
< 0.07 eV =⇒ Λ

C
(5)
ee

> 8.65 · 1014 GeV

(30)

If we want to take into account the interactions with
Goldstone bosons generated by symmetry breaking:

H ∼ 1√
2

(
−i

√
2G+

v + h+ iG0

)
(31)

Then, the full Lagrangian density for the Weinberg

operator becomes:

L5 − i
C

(5)
ℓℓ′

Λ
G0(v + h)νcℓνℓ′

− i
C

(5)
ℓℓ′√
2Λ

G+(v + h)
(
νcℓ ℓ

′ + ℓcνℓ′
)

+
C

(5)
ℓℓ′√
2Λ

G0G+
(
νcℓ ℓ

′ + ℓcνℓ′
)

+
C

(5)
ℓℓ′

2Λ

(
G0G0νcℓνℓ′ + 2G+G+ℓcℓ′

)
+ h.c

(32)

This Lagrangian leads to the Weinberg operator be-
ing applicable to meson and lepton decays, and estab-
lishes a road map to studying its behavior [15].

IV. PHENOMENOLOGY OF MAJORANA
NEUTRINOS

This part is dedicated to trying to determine how to
probe the nature of neutrinos and explore some of the
underlying problems based on a model of Majorana
neutrinos.

A. Mass mixing

Neutrinos change flavour while propagating, which is
a direct consequence of the gauge eigenstates not be-
ing aligned with the mass eigenstates. Lepton mixing
is described in the weak basis where the charged-lepton
mass matrix is diagonal (with eigenstates e, µ and τ)
so that the mixing matrix relates the neutrino weak-
eigenstates νℓ, ℓ = e, µ, τ and the neutrino mass eigen-
states νi, i = 1, 2, 3. Each flavour (weak) eigenstate
can be written as a combination of mass eigenstates,
and the Pontecorvo-Maki-Nakagawa-Sakata ma-
trix with components Uℓi contains the amplitudes of mass
eigenstates in terms of flavour.νeνµ

ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1ν2
ν3

, νℓ =

3∑
i=1

Uℓiνi

(33)
The elements of the transition matrix are often pa-

rameterized by three mixing angles θ12, θ23 and θ13 and
three CP-odd phases δ, α and β [16]. These angles are
the so-called Majorana phases, and if they are physi-
cally observable, they are currently unconstrained. We
use cij and sij to denote cos(θij) and sin(θij):

Uℓi =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

eiα 0 0
0 eiβ 0
0 0 1

 (34)



7

This matrix is almost made of three rotation matrices,
except for the δ angle introduced to take into account
parity violation, and the α and β angles that represent
the possibility for neutrinos to be Majorana particles.
These phases do not influence neutrino oscillations di-
rectly but are crucial for processes that violate lepton
number conservation allowed by the Majorana type
neutrinos. We define the mass eigenstates by considering
squared mass-differences between the three eigenstates.
Given the three neutrinos, we define three squared mass
matrices and two of them are independent. We impose
that ν1 and ν2 define the smallest squared mass differ-
ence and impose that m 2

2 > m 2
1 . The last state ν3 is

the left-over state that can be lighter or heavier that ν1
and ν2. Most of the necessary parameters are nowadays
determined, however, several crucial pieces are still miss-
ing: the neutrino mass hierarchy (if the third component
is lighter or heavier), the magnitude of the δ CP-phase,
the absolute scale of the neutrino mass . . . In the normal
hierarchy NH, the third mass eigenstate is the heaviest
neutrino and we can represent the flavour composition
depending on the CP-angle. In the inverse hierarchy IH,
the lightest neutrino is the third one and the squared
mass differences are different. Choosing between the two
mass hierarchies is a difficult challenge due to the diffi-
culties to measure properties of neutrinos. Depending on
the hierarchy considered, we can write the expression of
the masses of the mass eigenstates [17], by introducing
a parameter mmin which is the mass of the lightest neu-
trino. The expressions are given under the corresponding
hierarchy :

FIG. 1. Normal hierarchy

m1 NH = mmin

m2 NH =
√
m2

min +∆m2
sol

m3 NH =

√
m2

min +
∆m2

sol

2
+ ∆m2

atm NH

(35)

The flavours proportions varies with the eigenstate. In

the inverse hierarchy :

FIG. 2. Inverse hierarchy

m1 IH =

√
m2

min −
∆m2

sol

2
+ ∆m2

atm IH

m2 IH =

√
m2

min +
∆m2

sol

2
+ ∆m2

atm IH

m3 IH = mmin

(36)

There could be several ways to determine the mass hi-
erarchy, like looking at the sum of the three eigenmasses.
If that sum is below the minimum mass of ∼ 0.1 eV, the
existence of the normal hierarchy is indicated. Similarly,
in the study of the β decay, the mass of the electron
neutrino can be theoretically determined using the mass
eigenstates, and because they contribute with different
weights to the quantum state, it could indicate a sce-
nario. The numerical values are provided by the Particle
Data Group. Cosmological observations tend to put sev-
eral upper limits of about 1, 0 − 2, 0 eV on the sum of
neutrino masses [16], which is not enough to discrimi-
nate alone the mass hierarchy. What we have to inves-
tigate to go further are the reactions that could confirm
the Majorana nature of neutrinos as well as associated
observables that could indicate a hierarchy.

FIG. 3. m1 +m2 +m3 as a function of the lightest neutrino
mass for the two possible hierarchies
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TABLE I. Parameters of the PMNS matrix used for the simulation

∆m2
sol ∆m2

atm NH ∆m2
atm IH δ

(7.53± 0.18) · 10−5 eV2 (2.453± 0.033) · 10−3 eV2 (2.536± 0.034) · 10−3 eV2 1.36+0.20
−0.16 rad

s 2
12 s 2

13 s 2
23 NH s 2

23 IH

0.37+0.013
−0.012 (2.20± 0.07) · 10−2 0.546± 0.021 0.539± 0.022

B. Neutrinoless double β decay

Studying the effective Standard Model tells us that
neutral particles with a small Majorana mass is the
first hint one would expect to observe from new high-
scale physics because the relevant term in the Lagrangian
generating Majorana neutrino masses is the onlyD = 5
operator (suppressed by only one power of some new high
energy scale) consistent with the gauge symmetries. We
need to figure out what type of process could be a sign
that neutrinos are their own antiparticle. If it is the
case, then we might imagine a process in which we pro-
duce an antineutrino alongside the associated charged
lepton whose sign allows us to say an antineutrino has
been produced, but this antineutrino would then inter-
act as if it was a neutrino, producing another charged
lepton [14], [18]. This process is only possible if the neu-
trino can change behavior and act as a particle, and this
would produce a very distinct signature. Without neu-
trinos, the sum of the energy of the two electrons is a
fixed quantity, and the energy spectrum for such a pro-
cess simply becomes a peak at a defined energy. This
would allow us to distinguish a regular double β decay
from the neutrinoless version and then deduce the na-
ture of the involved neutrino. This is for the case where
the neutrinos are produced alongside electrons, but if we
want to be more general, it is possible for each flavour of
neutrinos.

FIG. 4. Feynman diagram for neutrinoless double β decay

What is different compared to a usual double β decay
is the neutrino is not emitted but exchanged internally,
implying it is a Majorana fermion. The observation of
neutrinoless double β decay would indicate that lepton
number conservation is violated, but we can also obtain
information on the mass of this Majorana neutrino as
the rate of neutrinoless double β decay is related to the
effective Majorana mass of the neutrino. The Wein-
berg operator involved in this process couples one mass-
less left-handed neutrino with momentum p and flavour
ℓ with the conjugate of a second neutrino of momentum
p and flavour ℓ′. The neutrino current can be modeled
as an unphysical Majorana neutrino N with mass mN

that contains the information about all the leptons that
can be involved in the process:

mN =
∣∣∣C(5)

ee + C(5)
eµ + C(5)

eτ + C(5)
µµ + C(5)

µτ + C(5)
ττ

∣∣∣v2
Λ
(37)

While it cannot directly determine the absolute neu-
trino mass scale, it is sensitive to the effectiveMajorana
mass of the electron neutrino which we will define just
after. By measuring or constraining this effective mass,
experiments can provide insights into the neutrino mass
hierarchy and potentially the absolute mass scale, when
combined with other neutrino oscillation data.

C. Decay phenomenology

We assume for now that the two leptons involved are
only of electron type, meaning that the process is made
through a standard light neutrino exchange. There is a
parameter of interest, which is the effective Majorana
mass, encapsulating the contributions of different neu-
trino mass eigenstates to the decay process:

|mββ | =
∣∣c212c213e2iαm1 + s212c

2
13e

2iβm2 + s213e
−2iδm3

∣∣
(38)

This parameter is quite powerful because it contains
information about the mass eigenstates, the mass hier-
archy, but also the Majorana phases α and β. The
first thing we can do is investigating the effective Majo-
rana mass as a function of the lightest neutrino mass for
the two hierarchies. Then, we could also wonder what is
the behavior of the effective mass depending on the sum
of the three masses. This is interesting because cosmo-
logical observation puts limits on this mass and so can
exclude some mass domain for us to investigate. In the
case of normal hierarchy, the effective mass is distributed
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within a flat area between 10−3 and 5 · 10−3 eV for a
minimum mass under 10−3 eV while it seems it vanishes
between 10−3 and 10−2 eV due to the combination of the
Majorana phases. In the inverse hierarchy, the values
are higher and the flat area spreads more. A vanishing ef-
fective mass does not imply that the theory suffers from
dangerous fine tuning because the effective mass could
assume a naturally small value that remains small after
renormalization due to the chiral symmetry of fermions.
A similar comment can be made on the second plot, ex-
cept that they are dependent on the cosmological limit on
the neutrino masses. Measuring an effective mass could
then be used to discriminate the two hierarchies based
on the accessible parameter space [17].

FIG. 5. Effective mass as a function of the minimal neutrino
mass

FIG. 6. Effective mass as a function of the summed eigen-
masses

Then, what if there are additional sterile neutrinos ?
We could assume a new contribution in the effective mass
that is encoded the following way:

|mββ | −→ |mββ +M4| (39)

M4 is a free parameter. As a result of adding new
contributions to the effective mass, phenomenology gets

completely turned out because the inverse hierarchy ef-
fective mass can now vanish compared to the normal hi-
erarchy mass for some values of M4. The fourth contri-
bution in the effective mass is not the unphysical neutrino
introduced before. The see-saw mechanism involves new
types of neutrinos called sterile, that would be more mas-
sive than the neutrinos we know and would not interact
via weak interactions, and in the presence of sterile neu-
trinos, the neutrino mixing matrix extends beyond the
standard matrix to include the mixing of sterile states,
now including contributions from the mixing of the elec-
tron neutrino with both active and sterile states. These
new mass states can contribute to the effective Majo-
ranamass if they have a significant mixing with the elec-
tron neutrino and if they are Majorana particles. Ster-
ile neutrinos at a high mass scale lead to the Weinberg
operator after integrating out the heavy states. The effec-
tive scale Λ in the Weinberg operator is then related to
the mass scale of these sterile neutrinos. If sterile neutri-
nos are light, they can still contribute to the Weinberg
operator through their mixing with active neutrinos. In
this case, the effective operator might receive corrections
due to the presence of additional light states, modifying
the neutrino mass matrix.

FIG. 7. Modified effective mass for M4 = 10−2 eV

FIG. 8. Modified effective mass for M4 = 10−1 eV
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CONCLUSION

The aim of this study was to identify properly what
problems are nowadays encountered when studying neu-
trinos, but also to draw the guideline to a possible study
at colliders. The discovery of neutrinoless double β de-
cay would be a solid proof that neutrinos are in fact Ma-
jorana particles, but also bring information about the
hierarchy and the decay rate as it is related to the ef-
fective Majorana mass mββ . In this article, we do not
give information about the cross section of such an in-
teraction, but we already know it should be very small.
What can also be investigated is the possibility for a dou-
ble decay with muon or tau neutrinos, the effective mass

is directly deduced from the mass mixing matrix, and
phenomenology is modified, leading to a completely dif-
ferent accessible parameter space. This result has to be
manipulated carefully, because changing the type of neu-
trino changes the cross section but also the type of ex-
periment to perform. It could also be possible that no
nucleus is able to decay using these neutrinos because
they deal with higher energies that can be out of the ex-
citation spectrum. The study of the Weinberg operator
then predicts new interactions between neutrinos and the
Higgs bosons, which can be investigated (currently, the
guess of this study would be 10−24 GeV) to obtain the
partial width and try to detect any deviation from the
Standard Model.

FIG. 9. Effective mass as a function of the minimal neutrino mass in the muon (a) and tau (b) case
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